![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам психология педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине |
Доклад: АЦП на микросхеме К572ПВ2Доклад: АЦП на микросхеме К572ПВ2АЦП на микросхеме К572ПВ2. Микросхема К572ПВ2 [2 стр.229] представляет собой АЦП двойного интегрирования с автоматической коррекцией нуля. Сначала рассмотрим принцип работы данного класса АЦП. Структурная схема АЦП приведена на рис.1 [методичка стр.22 рис.13], [3 стр.464 рис.24.30]. Принцип работы
АЦП поясняется с помощью диаграммы на рис.2. Работа начинается с замыкания
ключа S1 соответствующим сигналом схемы управления [методичка
стр.21]. При наличии на входе напряжения, отличного от 0 начинается заряд конденсатора
С1 интегратора. (Для определенности считаем, что входное напряжение
есть и отрицательно. Входной усилитель в данной схеме играет роль повторителя
напряжения. Он необходим для исключения влияния АЦП на измеряемую цепь и в
процессе АЦ преобразования самостоятельной роли не играет) Обозначив время 1го
такта работа АЦП Рис.2Нужно заметить, что в процессе работы выход ОУ интегратора “ведет” себя так, что бы напряжение на инверсном входе было нулевым. Т.е. выход ОУ станет положительным в самом начале процесса интегрирования. При этом компаратор сразу выдаст на счетчик разрешающий сигнал. Однако, счет не начнется, поскольку импульсы со схемы управления в этом такте еще не поступают.2й такт начинается тем, что отключается ключ S1
и включается ключ S2. При этом интегратор соединяется с источником
опорного напряжения
|
Число десятичных разрядов | 3.5 |
Погрешность преобразования, ед. мл. разряда Для варианта К572ПВ2 А Для варианта К572ПВ2 Б Для варианта К572ПВ2 В |
1 2 3 |
Напряжение питания В | +5±5%, -5±5% |
Опорное напряжение UREF, В |
0.1..1 (обычно используют 0.1 или 1 В, но можно использовать и промежуточные значения) |
Диапазон входного сигнала |
±1.999· UREF |
Входное сопротивление | 20 МОм |
Странное на 1й взгляд обозначение 3.5 разряда
означает, что индицируется 3 младших десятичных разряда, а в 4м разряде
индицируется знак числа (если он отрицательный) и 1 (если она есть в 4м
разряде). Другие цифры в 4м разряде данная микросхема индицировать не может.
Отметим так же, что микросхемы К572ПВ2 выпускаются в металлокерамическом
корпусе 4134.48-2 с планарным расположением 48 выводов. Существует и микросхема
КР572ПВ2 в пластмассовом корпусе 2123.40-2 с вертикальным расположением 40
выводов [2 стр.229..230]. Электрически они одинаковы. В данной работе везде
имеется в виду микросхема К572ПВ2 с 48 выводами.
Типовое включение микросхемы К572ПВ2, рекомендованное изготовителем, приведено на рис.2 [2 стр.244 рис.4.7], [6 стр.144]. Отличие рисунков, приведенных в указанных источниках состоит в том, что в [6 стр.144] не указан способ подачи опорного напряжения. В [2 стр.244 рис.4.7] и на рис.2 для формирования опорного напряжения применен стабилизатор тока на полевом транзисторе типа К103Ж1 [4 стр.188], но может быть применен транзистор и другого типа. Эта схема описана в [3 стр.62,63 рис.5.11]. Работа транзистора в данной схеме основана на том, что на потенциометре 4.7к образуется падение напряжения, которое приложено к затвору и "подзапирает" транзистор. Если по какой-то причине ток возрастет, возрастет и запирающее напряжение. Транзистор запрется сильнее и ток уменьшится. Если же ток уменьшится, уменьшится и запирающее напряжение. Транзистор слегка отопрется и ток возрастет. Стабилизированный таким образом ток протекает через резистор 470 Ом. Падение напряжения на этом резисторе и является опорным напряжением, приложенным к входу 13 микросхемы К572ПВ2. Потенциометр 4.7к позволяет точно отрегулировать ток и получить на резисторе 470 Ом требуемое опорное напряжение. Номиналы и допуска резисторов и конденсаторов, отмеченных на рис.2 буквами с номерами, приведены в табл.1 [2 стр.243].
Табл.1.
|
При опорном напряжении 0.1 В | При опорном напряжении 1 В |
C1 |
0.22 мкФ±5% | 0.22 мкФ±5% |
C2 |
0.47 мкФ±5% | 0.047 мкФ±5% |
C3 |
0.01 мкФ±5% | 0.01 мкФ±5% |
C4 |
1 мкФ±5% | 0.1 мкФ±5% |
C5 |
100 пФ±5% | 100 пФ±5% |
R1 |
47 к ±5% | 470 к ±5% |
R2 |
1 МОм ±20% | 1 МОм ±20% |
R3 |
100 к ±5% | 100 к ±5% |
Назначение и номера некоторых выводов приведены в табл.2 [2 стр.230].
Табл.2.
Номер вывода | Название | Назначение |
3 | -V | Питание –5В |
4 | INT | Конденсатор интегратора |
5 | BUF | Резистор интегратора |
6 | A/Z | Конденсатор автокоррекции |
7 | INL | Аналог. входы: низко (INL) и высоко (INH) потенциальные |
8 | INH | |
9 | Com | Аналоговая земля |
10 | Cref- | Опорный конденсатор |
11 | Cref+ | |
12 | Refl 0 | Опорное напряжение |
13 | Refl 1 | |
44 | BP | Цифровая земля |
21 | OSC 3 | Внешние навесные элементы встроенного тактового генератора. |
22 | OSC 2 | |
23 | OSC 1 | |
24 | +V | Питание +5В |
43 | Выход полярность” (лог.0 при измеряемом напряжении ниже 0) | |
|
Рекомендуется применять конденсаторы типов К71-5 или К72-9, К73-16, К73-17 [2 стр.240]. Допуск на резистор и потенциометр, номиналы которых приведены на схеме, может быть ±20%, т.к. он компенсируется регулировкой. Однако, они должны иметь хорошую временную и температурную стабильность. Указанные в табл.1 номиналы R3 и С5 обеспечивают тактовую частоту внутреннего генератора 50 кГц.
Для индикации результатов измерения рекомендовано использовать 7 сегментные индикаторы типа АЛС342Б (3 мл. разряда) АЛС324В (1/2 4го разряда) [5 стр.165]. Цоколевка и расположение сегментов индикаторов приведена на рис.3.
Литература
1.Аналоговые и цифровые интегральные схемы. Под ред. Якубовского С.В. М. 1985.
2.Федорков Б.Г. Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение. М 1990.
3.Титце У. Шенк К. Полупроводниковая схемотехника. М. 1982.
4.Транзисторы. Справочник. Григорьев О.П. и др. М. 1989.
5. Иванов В.И. Аксенов А.И. Юшин А.М. Полупроводниковые оптоэлектронные приборы. Справочник. М. 1988.
6. Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги. Серии К565..К599. Т6 М.1999.
|