рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

психология педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Реферат: Альтернативные источники энергии и возможности их применения в России

Реферат: Альтернативные источники энергии и возможности их применения в России

Пермский Государственный Университет

Философско-социологический факультет

Альтернативные источники энергии

 и возможности их применения в России

Кафедра социологии и

политологии

Студент: Уваров П.А.

Группа: СЦГ-2 курс

Пермь, 2009


Содержание

Введение

1 Понятие и основные виды альтернативной энергии

1.1 Геотермальная энергия (тепло земли)

1.2 Энергия солнца

1.3 Энергия ветра

1.4 Энергия воды

1.5 Энергия волн

1.6 Энергия течений

2. Состояние и перспективы развития альтернативной энергетики в России

Заключение

Список используемых источников


Введение

Не зря говорят: «Энергетика - хлеб промышленности». Чем более развиты промышленность и техника, тем больше энергии нужно для них. Существует даже специальное понятие - «опережающее развитие энергетики». Это значит, что ни одно промышленное предприятие, ни один новый город или просто дом нельзя построить до того, как будет определен или создан заново источник энергии, которую они станут потреблять. Вот почему по количеству добываемой и используемой энергии довольно точно можно судить о технической и экономической мощи, а проще говоря - о богатстве любого государства.

В природе запасы энергии огромны. Ее несут солнечные лучи, ветры и движущиеся массы воды, она хранится в древесине, залежах газа, нефти, каменного угля. Практически безгранична энергия, «запечатанная» в ядрах атомов вещества. Но не все ее формы пригодны для прямого использования.

За долгую историю энергетики накопилось много технических средств и способов добывания энергии и преобразования ее в нужные людям формы. Собственно, и человек-то стал человеком только тогда, когда научился получать и использовать тепловую энергию. Огонь костров зажгли первые люди, еще не понимавшие его природы, однако этот способ преобразования химической энергии в тепловую сохраняется и совершенствуется уже на протяжении тысячелетий.

К энергии собственных мускулов и огня люди добавили мускульную энергию животных. Они изобрели технику для удаления химически связанной воды из глины с помощью тепловой энергии огня - гончарные печи, в которых получали прочные керамические изделия. Конечно, процессы, происходящие при этом, человек познал только тысячелетия спустя.

Потом люди придумали мельницы - технику для преобразования энергии ветряных потоков и ветра в механическую энергии вращающегося вала. Но только с изобретением паровой машины, двигателя внутреннего сгорания, гидравлической, паровой и газовой турбин, электрических генератора и двигателя, человечество получило в свое распоряжение достаточно мощные технические устройства. Они способны преобразовать природную энергию в иные ее виды, удобные для применения и получения больших количеств работы. Поиск новых источников энергии на этом не завершился: были изобретены аккумуляторы, топливные элементы, преобразователи солнечной энергии в электрическую и - уже в середине ХХ столетия - атомные реакторы.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем шестимиллиардного населения Земли становится сейчас все более насущной.

Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Однако их развитие сдерживается рядом факторов. Стоимость угля, нефти и газа, на которых работают тепловые станции, растет, а природные ресурсы этих видов топлива сокращаются. К тому же многие страны не располагают собственными топливными ресурсами или испытывают в них недостаток. В процессе производства электроэнергии на ТЭС происходит выброс вредных веществ в атмосферу. Причем если топливом служит уголь, особенно бурый, малоценный для другого вида использования и с большим содержанием ненужных примесей, выбросы достигают колоссальных размеров. И, наконец, аварии на ТЭС наносят большой ущерб природе, сопоставимый с вредом любого крупного пожара. В худшем случае такой пожар может сопровождаться взрывом с образованием облака угольной пыли или сажи.

Гидроэнергетические ресурсы в развитых странах используются практически полностью: большинство речных участков, пригодных для гидротехнического строительства, уже освоены. А какой вред причиняют природе гидроэлектростанции! Выбросов в воздух от ГЭС нет никаких, но зато вред водной среде наносит довольно большой. В первую очередь страдают рыбы, которые не могут преодолеть плотины ГЭС. На реках, где построены гидроэлектростанции, особенно если их несколько – так называемые каскады ГЭС, - резко меняется количество воды до и после плотин. На равнинных реках разливаются огромные водохранилища, и затопленные земли безвозвратно потеряны для сельского хозяйства, лесов, лугов и расселения людей. Что касается аварий на ГЭС, то в случае прорыва любой гидроэлектростанции образуется огромная волна, которая сметет все находящиеся ниже плотины ГЭС. А ведь большинство таких плотин расположено вблизи крупных городов с населением в несколько сотен тысяч жителей.

Выход из создавшегося положения виделся в развитии атомной энергетики. На конец  1989 года в мире построено и работало более 400 атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются источником дешевой и экологически чистой энергией. Топливом для АЭС служит урановая руда – дорогостоящее и трудно добываемое сырье, запасы которого ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими трудностями и затратами. Лишь немногие страны сейчас продолжают строительство новых АЭС. Серьезным тормозом для дальнейшего развития атомной энергетики являются проблемы загрязнения окружающей среды. Все это дополнительно осложняет отношение к атомной энергетике. Все чаще звучат призывы, требующие отказаться от использования ядерного топлива вообще, закрыть все атомные электростанции и возвратится к производству электроэнергии на ТЭС и ГЭС, а также использовать так называемые возобновимые – малые, или «нетрадиционные», - виды получения энергии. К последним относят прежде всего установки и устройства, использующие энергию ветра, воды, солнца, геотермальную энергию, а также тепло, содержащееся в воде, воздухе и земле.


1. Основные виды Альтернативной энергии

1.1 Геотермальная энергия (тепло земли)

Геотермальная энергия - в дословном переводе значит: земли тепловая энергия. Объём Земли составляет примерно 1085 млрд.куб.км и весь он, за исключением тонкого слоя земной коры , имеет очень высокую температуру.

Если учесть ещё и теплоемкость пород Земли, то станет ясно, что геотермальная теплота представляет собой, несомненно, самый крупный источник энергии, которым в настоящее время располагает человек. Причём это энергия в чистом виде, так как она уже существует как теплота, и поэтому для её получения не требуется сжигать топливо или создавать реакторы.

В некоторых районах природа доставляет геотермальную энергию к поверхности в виде пара или перегретой воды, вскипающей и переходящей в пар при выходе на поверхность. Природный пар можно непосредственно использовать для производства электроэнергии. Имеются также районы, где геотермальными водами из источников и скважин можно обогревать жилища и теплицы ( островное государство на севере Атлантического океана -Исландия; и наши Камчатка и Курилы).

Однако в целом, особенно с учётом величины глубинного тепла Земли, использование геотермальной энергии в мире крайне ограничено.

Для производства электроэнергии с помощью геотермального пара от этого пара отделяют твёрдые частицы, пропуская его через сепаратор и затем направляют его в турбину. "Стоимость топлива" такой электростанции определяется капитальными затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом также невелика, так как последняя не имеет топки, котельной установки и дымовой трубы. В таком удобном естественном виде геотермальная энергия является экономически выгодным источником электрической энергии. К сожалению, на Земле редко встречаются поверхностные выходы природного пара или перегретых ( то есть, с температурой гораздо выше 100oС ) вод, вскипающих с образованием достаточного кол-ва пара.

Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива. В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. т усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии.

Геотермальная энергия по времени использования — наиболее старый источник альтернативной энергии. В 1994 г. в мире работало 330 блоков таких станций и здесь доминировали США (168 блоков на «месторождениях» Гейзере в долине гейзеров, Империал Вэлли и др.). Второе место занимала. Италия, но в последние годы ее обогнали КНР и Мексика. Самая большая доля используемой геотермальной энергии приходится на страны Латинской Америки, но и она составляет немного более 1%.

В России перспективными в этом смысле районами являются Камчатка и Курильские острова. С 60-х годов на Камчатке успешно работает полностью автоматизированная Паужетская ГеоТЭС мощностью 11 МВт, на Курилах — станция на о. Кунашир. Такие станции могут быть конкурентоспособны лишь в районах с высокой отпускной ценой на электроэнергию, а на Камчатке и Курилах она очень высока в силу дальности перевозок топлива и отсутствия железных дорог.


1.2 Энергия солнца

Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Полное количество солнечной энергии, поступающей на поверхность Земли за неделю, превышает энергию всех мировых запасов нефти, газа, угля и урана. И в России наибольший теоретический потенциал, более 2000 млрд. тонн условного топлива (т.у.т.), имеет солнечная энергия . Несмотря на такой большой потенциал в новой энергетической программе России вклад возобновляемых источников энергии на 2005 г определен в очень малом объеме - 17-21 млн.т у.т.  Существует широко распространенное мнение, что солнечная энергия является экзотической и ее практическое использование-дело отдаленного будущего (после 2020г).  В данной работе я покажу, что это не так и что солнечная энергия является серьезной альтернативой традиционной энергетике уже в настоящее время.

Известно, что каждый год в мире потребляется столько нефти, сколько ее образуется в природных условиях за 2 млн.лет. Гигантские темпы потребления не возобновляемых энергоресурсов по относительно низкой цене, которые не отражают реальные совокупные затраты общества, по существу означают жизнь в займы, кредиты у будущих поколений, которым не будет доступна энергия по такой низкой цене.  Энергосберегающие технологии для солнечного дома являются наиболее приемлемыми по экономической эффективности их использования. Их применение позволит снизить энергопотребление в домах до 60%. В качестве примера успешного применения этих технологий можно отметить проект "2000 солнечных крыш" в Германии.  В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов.

При КПД солнечной электростанции (СЭС) 12% все современное потребление электроэнергии в России может быть получено от СЭС активной площадью около 4000 кв.м, что составляет 0.024% территории.

Наиболее практическое применение в мире получили гибридные солнечно-топливные электростанции с параметрами: КПД 13,9%, температура пара 371 гр.С , давление пара 100 бар, стоимость вырабатываемой электроэнергии 0,08-0,12 долл/кВт.ч, суммарная мощность в США 400 МВт при стоимости 3 долл/Вт. СЭС работает в пиковом режиме при отпускной цене за 1 кВт.ч электроэнергии в энергосистеме: с 8 до 12 час.-0,066 долл. и с 12 до 18 час.- 0,353 долл.. КПД СЭС может быть увеличен до 23% - среднего КПД системных электростанций, а стоимость электроэнергии снижена за счет комбинированной выработки электрической энергии и тепла.

Основным технологическим достижением этого проекта является создание Германской фирмой Flachglass Solartechnik GMBH технологии производства стеклянного параболоцилиндрического концентратора длиной 100 м с апертурой 5,76 м, оптическим КПД 81% и ресурсом работы 30 лет. При наличии такой технологии зеркал в России целесообразно массовое производство СЭС в южных районах, где имеются газопроводы или небольшие месторождения газа и прямая солнечная радиация превышает 50% от суммарной.

Принципиально новые типы солнечных концентратов, использующие технологию голографии, предложены ВИЭСХом.

Его главные характеристики - сочетание положительных качеств солнечных электростанций с центральным приемником модульного типа и возможность использования в качестве приемника как традиционных паронагревателей, так и солнечных элементов на основе кремния.

Одной из наиболее перспективных технологий солнечной энергетики является создание фотоэлектрических станций с солнечными элементами на основе кремния, которые преобразуют в электрическую энергию прямую и рассеянную составляющие солнечной радиации с КПД 12-15%. Лабораторные образцы имеют КПД 23%. Мировое производство солнечных элементов превышает 50 МВт в год и увеличивается ежегодно на 30%. Современный уровень производства солнечных элементов соответствует начальной фазе их использования для освещения, подъема воды, телекоммуникационных станций, питания бытовых приборов в отдельных районах и в транспортных средствах. Стоимость солнечных элементов составляет 2,5-3 долл/Вт при стоимости электроэнергии 0,25-0,56 долл/кВт.ч. Солнечные энергосистемы заменяют керосиновые лампы, свечи, сухие элементы и аккумуляторы, а при значительном удалении от энергосистемы и малой мощности нагрузки - дизельные электрогенераторы и линии электропередач.

1.3 Энергия ветра

Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.

Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать древние персы свыше 1,5 тыс. лет назад. В дальнейшем ветряные мельницы совершенствовались. В Европе они не только мололи муку, но и откачивали воду, сбивали масло, как, например в Голландии. Первый электрогенератор был сконструирован в Дании в 1890 г. Через 20 лет в стране работали уже сотни подобных установок.

Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт·ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломают ветряки.

Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь. К тому же ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.

Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается электрический ток.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда у нее есть груз противовес); вертикальные роторы, напоминающие разрезанную вдоль и насажанную на ось бочку; некое подобие «вставшего дыбом» вертолетного винта: наружные концы его лопастей загнуты вверх и соединены между собой. Вертикальные конструкции хороши тем, что улавливают ветер любого направления. Остальным приходится разворачиваться по ветру.

Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветреные фермы». Ветродвигатели там стоят рядами на обширном пространстве и работают на единую сеть. На одном краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком близко, чтобы они не загораживали друг друга. Поэтому ферма занимает много места. Такие фермы есть в США, во Франции, в Англии, а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.

Чтобы снизить зависимость от непостоянного направления и силы ветра, в систему включают маховики, частично сглаживающие порывы ветра, и разного рода аккумуляторы. Чаще всего они электрические. Но применяют также воздушные (ветряк нагнетает воздух в баллоны; выходя оттуда, его ровная струя вращает турбину с электрогенератором) и гидравлические (силой ветра вода поднимается на определенную высоту, а, падая вниз, вращает турбину). Ставят также электролизные аккумуляторы. Ветряк дает электрический ток, разлагающий воду на кислород и водород. Их запасают в баллонах и по мере необходимости сжигают в топливном элементе (т.е. в химическом реакторе, где энергия горючего превращается в электричество) либо в газовой турбине, вновь получая ток, но уже без резких колебаний напряжения, связанного с капризами ветра.

Сейчас в мире работает более 30 тыс. ветроустановок различной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. Так, в 1993 г. во Франции себестоимость 1 кВт·ч электроэнергии, полученной на ветростанции, равнялась 40 сантимам, а к 2000 году она снизилась в 1,5 раза. Правда энергия АЭС обходится всего в 12 сантимов за 1 кВт·ч.

1.4 Энергия воды

Уровень воды на морских побережьях в течение суток меняется три раза. Такие колебания особо заметны в заливах и устьях рек, впадающих в море. Древние греки объясняли колебание уровня воды волей повелителя морей Посейдона. В XVIII в. английский физик Исаак Ньютон разгадал тайну морских приливов и отливов: огромные массы воды в мировом океане приводятся в движение силами притяжения Луны и Солнца. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до 20 м.

Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность ПЭС зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. ПЭС двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. 24 гидроагрегата ПЭС вырабатывают в среднем за год 502 млн. кВт. час электроэнергии. Для этой станции   разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как  насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС на реке Ранс экономически оправдана, годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений. Электростанция входит в энергосистему Франции и эффективно используется.

В 1968 г. на Баренцевом море, недалеко от Мурманска, вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место ее строительства – Кислая Губа представляет собой узкий залив шириной 150 м и длиной 450 м. Хотя мощность Кислогубской ПЭС невелика, ее сооружение имело важное значение для дальнейших исследовательских и проектно-конструкторских работ в области использования энергии приливов.

Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный потенциал Охотского моря, где местами, например на Пенжинской губе, высота приливов составляет 12,9 м, а в Гижигинской губе – 12-14 м.

Работы в этой области ведутся и за рубежом. В 1985 г. пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м

С точки зрения экологии ПЭС имеет бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной трубы Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.


1.5.Энергия волн

Идея получения электроэнергии от морских волн была изложена еще в 1935 г. советским ученым К.Э. Циолковским.

В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит из него, то входит. Но движение воздуха возможно только лишь через верхнее отверстие (такова конструкция буя). А там установлена турбина, вращающаяся всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны высотой 35 см заставляют турбину развивать более 2000 оборотов в минуту. Другой тип установки – что-то вроде стационарной микроэлектростанции. Внешне она похожа на ящик, установленный на опорах на небольшой глубине. Волны проникают в ящик и приводят в действие турбину. И здесь для работы достаточно совсем небольшого волнения моря. Даже волны высотой в 20 см зажигали лампочки общей мощностью 200 Вт.

В настоящее время волноэнергетические установки используются для  энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, морекультурных хозяйств. Началось промышленное использование волновой энергии. В мире  уже  около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут  работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.

В волновых установках с пневматическими преобразователями под  действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которой обладает выпрямляющим действием, сохраняя неизменным  направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора. Турбина нашла широкое применение в различных волноэнергетических установках.

Волновая энергетическая установка "Каймей" ("Морской свет") – самая мощная действующая энергетическая установка  с пневматическими преобразователями – построена в Японии в 1976 г. В своей работе она использует волны высотой до 6 – 10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т установлены 22 воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 – 1979 гг. близ города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км. В  1985 г. в Норвегии в 46 км  к северо-западу  от города  Берген построена  промышленная  волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен  работала  по пневматическому принципу. Она представляла собой железобетонную камеру, заглубленную в скале; над ней была установлена стальная башня высотой 12,3 мм  и диаметром 3,6 м.  Входящие в камеру волны создавали изменение объема воздуха. Возникающий поток через систему клапанов приводил  во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составляла 1,2 млн. кВт. ч. Зимним штормом в конце  1988 г. башня станции была разрушена. Разрабатывается проект  новой башни из железобетона.

Конструкция второй установки состоит из конусовидного канала в ущелье  длиной около 170 м с бетонными стенками высотой 15 м и шириной в основании 55 м, входящего в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической установкой. Волны, проходя по сужающемуся каналу, увеличивают свою высоту с 1,1  до 15 м и вливаются  в резервуар, уровень которого на 3 м выше уровня моря. Из резервуара вода проходит через низконапорные гидротурбины мощностью 350 кВт. Станция ежегодно производит до 2 млн. кВт.·ч электроэнергии.

А в Великобритании разрабатывается оригинальная конструкция волновой энергетической установки типа "моллюск", в которой в качестве рабочих органов используются мягкие оболочки – камеры. В них находится воздух под давлением, несколько большим атмосферного. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток  из камер в каркас установки и обратно. На пути потока  установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается  опытная плавучая установка из 6 камер, укрепленных на каркасе длиной 120 м и высотой  8 м. Ожидаемая мощность 500 кВт. Дальнейшие разработки показали, что наибольший эффект дает расположение камер по кругу. В Шотландии на озере  Лох-Несс была испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Впервые конструкция волнового плота была запатентована в СССР еще в 1926 г. В 1978 г. в Великобритании проводились испытания опытных моделей океанских электростанций, в основе которых лежит аналогичное решение. Волновой плот  Коккерела состоит из шарнирно соединенных секций,  перемещение которых относительно друг друга передается насосам с электрогенераторами. Вся конструкция удерживается на месте якорями. Трехсекционный волновой плот Коккерела длиной 100 м, шириной 50 м и высотой 10 м может дать мощность до 2 тыс. кВт.

В СССР модель волнового плота испытывалась в 70-х гг. на Черном море. Она имела длину 12 м, ширину поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 – 15 м установка развивала мощность 150 кВт.

Проект, известный под названием "утка Солтера", представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок ("утка"), профиль которого рассчитан по законам гидродинамики. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводящая в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 – 30 поплавков. В 1978 г. была испытана модель установки, состоявшая из 20-ти поплавков диаметром 1 м. Выработанная мощность составили 10 кВт. Разработан проект более мощной установки из 20 – 30 поплавков диаметром 15 м, укрепленных на валу, длиной 1200 м. Предполагаемая мощность установки 45 тыс. кВт. Подобные системы, установленные у западных берегов Британских островов, могут обеспечить потребности Великобритании в электроэнергии.

1.6 Энергия течений

Наиболее мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. куб.м/с воды со скоростью до 2 м/с, и Флоридского течения (30 млн. куб.м/с, скорость до 1,8 м/с).

Для океанской энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.

Программа "Кориолис" предусматривает установку во Флоридском проливе в 30 км восточнее города Майами 242 турбин с двумя рабочими колесами диаметром 168 м, вращающимися в противоположных направлениях. Пара рабочих колес размещается внутри полой камеры из алюминия, обеспечивающей плавучесть турбины. Для повышения эффективности лопасти колес предполагается сделать достаточно гибкими. Вся система "Кориолис" общей длиной 60 км будет  ориентирована по основному потоку; ширина ее при расположении турбин в 22 ряда по 11 турбин в каждом составит 30 км. Агрегаты предполагается отбуксировать к месту установки и заглубить на 30 м, чтобы не препятствовать судоходству.

После того как большая часть Южного Пассатного течения проникает в Карибское море и Мексиканский залив, вода возвращается оттуда в Атлантику через Флоридский залив. Ширина течения становится минимальной – 80 км. При этом оно убыстряет свое движение до 2 м/с. Когда же Флоридское течение усиливается Антильским, расход воды достигает максимума. Развивается сила, вполне достаточная, чтобы привести в движение турбину с размашистыми лопастями, вал которой соединен с электрогенератором. Дальше – передача тока по подводному кабелю на берег.

Материал турбины- алюминий. Срок службы – 80 лет. Ее постоянное место – под водой. Подъем на поверхность воды только для профилактического ремонта. Ее работа практически не зависит от глубины погружения и температуры воды. Лопасти вращаются медленно, и небольшие рыбы могут свободно проплывать через турбину. А вот крупным вход закрыт предохранительной сеткой.

Американские инженеры, считают, что строительство такого сооружения даже дешевле, чем возведение тепловых электростанций. Здесь не нужно возводить здание, прокладывать дороги, устраивать склады. Да и эксплуатационные расходы существенно меньше.

Полезная мощность каждой турбины с учетом затрат на эксплуатацию и потерь при передаче на берег составит 43 МВт, что позволит удовлетворить потребности штата Флориды (США) на 10%.

 Первый опытный образец подобной турбины диаметром 1,5 м был испытан во Флоридском проливе. Разработан также проект турбины с рабочим колесом диаметром 12 м и мощностью 400 кВт.


2 Состояние и перспективы развития альтернативной энергетики в России

Доля традиционной топливной энергетики в мировом энергобалансе будет непрерывно сокращаться, а на смену придет нетрадиционная — альтернативная энергетика, основанная на использовании возобновляемых источников энергии. И от того, с какими темпами это произойдет в конкретной стране, зависит не только ее экономическое благополучие, но и ее независимость, ее национальная безопасность.

Ситуация с возобновимыми источниками энергии в России, как и почти со всем у нас в стране, может быть названа уникальной. Запасы этих источников, поддающихся использованию уже на сегодняшнем техническом уровне, огромны. Вот одна из оценок: солнечной лучистой энергии — 2300млрдТУТ (тонн условного топлива); ветра — 26,7млрдТУТ, биомассы 10млрдТУТ; тепла Земли — 40000млрдТУТ; малых рек — 360млрдТУТ; морей и океанов 30млрдТУТ. Эти источники намного превышают современный уровень энергопотребления России (1,2млрдТУТ в год). Однако используются из всего этого немыслимого изобилия даже не сказать что крохи — микроскопические количества. Как и в мире в целом, в России наиболее развита среди возобновляемых видов энергетики ветроэнергетика. Еще в 1930-хгг. в нашей стране серийно выпускалось несколько видов ветроустановок мощностью 3-4кВт, однако в 1960-егг. их выпуск был прекращен. В последние годы СССР правительство вновь обратило внимание на эту область, однако не успело реализовать своих планов. Тем не менее, с 1980 по 2006гг. Россией наработан большой научно-технический задел (но отставание в вопросах практического использования возобновимых источников энергии у России серьезное). Сегодня общая мощность действующих, сооружаемых и планируемых к вводу в России ВЭУ и ВЭС составляет 200 МВт. Мощность отдельных ветроагрегатов, изготавливаемых российскими предприятиями, лежит в диапазоне от 0,04 до 1000,0 кВт [21]. В качестве примера приведем нескольких разработчиков и производителей ВЭУ и ВЭС. В Москве ООО «СКТБ «Искра» производит ветроэлектрические станции М-250 мощностью 250Вт. В Дубне Московской области предприятие Гос.МКБ «Радуга» производит легко устанавливаемые ВЭС в 750Вт, 1кВт и 8кВт; Санкт-Петербургский НИИ «Электроприбор» выпускает ВЭУ до 500 Вт.

В Киеве с 1999г. научно-производственная группа WindElectric производит ветроэлектростанции бытового назначения WE-1000 мощностью 1 кВт. Специалистами группы разработана уникальная многолопастная, универсально-скоростная и абсолютно бесшумная турбина небольших размеров, эффективно использующая любой воздушный поток.

Хабаровская «Компания ЛМВ Ветроэнергетика» производит ВЭС мощностью от 0,25 до 10кВт, последние могут объединяться в системы мощностью до 100кВт. С 1993г. этим предприятием разработано и произведено 640 ВЭС. Большинство установлено в Сибири, на Дальнем Востоке, Камчатке, Чукотке. Срок эксплуатации ВЭС достигает 20 лет в любых климатических зонах. Компания поставляет также солнечные батареи, которые работают совместно с ВЭС (мощность таких ветросолнечных установок составляет от 50Вт до 100 кВт).

В отношении ресурсов ветровой энергии в России наиболее перспективны такие районы, как Побережье Северного Ледовитого океана, Камчатка, Сахалин, Чукотка, Якутия, а также побережье Финского залива, Черного и Каспийского морей. Высокие среднегодовые скорости ветра, малая обеспеченность централизованными электросетями и обилие неиспользуемых в хозяйстве площадей делает эти местности практически идеальными для развития ветровой энергетики. Похожая ситуация с солнечной энергетикой. Солнечная энергия, поступающая за неделю на территорию нашей страны, превышает энергию всех российских ресурсов нефти, угля, газа и урана. Имеются интересные отечественные разработки в этой области, но нет никакой поддержки их со стороны государства и, следовательно, нет рынка фотоэнергетики. Однако объем выпуска солнечных батарей исчисляется мегаваттами. В 2006г. было произведено около 400 МВт. Имеется тенденция к некоторому росту. Впрочем, больший интерес к продукции различных научно-производственных объединений, выпускающих фотоэлементы, проявляют покупатели из-за рубежа, для россиян они все еще дороги; в частности, потому что сырье для производства кристаллических пленочных элементов приходится ввозить из-за рубежа (в советское время заводы по производству кремния находились в Киргизии и Украине) Наиболее благоприятные районы для использования солнечной энергии в России — это Северный Кавказ, Ставропольский и Краснодарский края, Астраханская область, Калмыкия, Тува, Бурятия, Читинская область, Дальний Восток.

Наибольшие достижения по использованию солнечной энергии отмечены в области создания систем теплоснабжения с применением плоских солнечных коллекторов. Первое место в России во внедрении таких систем занимает Краснодарский край, где за последние годы в соответствии с действующей краевой программой энергосбережения сооружено около сотни крупных солнечных систем горячего водоснабжения и множество мелких установок индивидуального пользования. Наибольшее развитие солнечные установки для обогрева помещений получили в Краснодарском крае и Республике Бурятия. В Бурятии солнечными коллекторами производительностью от 500 до 3000 литров горячей воды (90-100 градусов по Цельсию) в сутки оснащены различные промышленные и социальные объекты - больницы, школы,  завод "Электромашина" и т.д., а также частные жилые здания. Сравнительно повышенное внимание уделяется развитию геотермальных электростанций, более, видимо, привычных нашим энергетическим распорядителям и достигающих больших мощностей, а потому лучше укладывающихся в привычную концепцию энергетического гигантизма. Специалисты считают, что запасы геотермальной энергии на Камчатке и Курильских островах могут обеспечить электростанции мощностью до 1000МВт.

Ещё в 1967г. на Камчатке была построена Паужетская ГеоТЭС мощностью 11,5МВт. Она была пятой ГеоТЭС в мире. В 1967г. была введена в действие Паратунская ГеоТЭС — первая в мире с бинарным циклом Ренкина. В настоящее время строится Мутновская ГеоТЭС мощностью 200МВт с использованием отечественного оборудования, изготовленного Калужским турбинным заводом. Этот завод приступил также к серийному выпуску модульных блоков для геотермального электро - и теплоснабжения. С использованием таких блоков Камчатка и Сахалин могут быть практически полностью обеспечены электроэнергией и теплом от геотермальных источников. Геотермальные источники с достаточно большим энергетическим потенциалом имеются в Ставропольском и Краснодарском краях. Сегодня там вклад систем геотермального теплоснабжения составляет 3млн.Гкал/год.

По мнению специалистов, при несметных запасах этого вида энергии не решен вопрос о рациональном, рентабельном и экологически безвредном использовании геотермальных ресурсов, что мешает наладить их индустриальное освоение. Например, добываемые геотермальные воды используются варварскими методами: неочищенную отработанную воду, содержащую ряд опасных веществ (ртуть, мышьяк, фенолы, серу и т.п.) сбрасывают в окружающие водоемы, нанося непоправимый вред природе. К тому же, все трубопроводы геотермальных систем отопления быстро выходят из строя из-за высокой минерализации геотермальных вод. Поэтому требуется коренной пересмотр технологии использования геотермальной энергии.

Сейчас ведущим предприятием по изготовлению геотермальных электрических станций в России является Калужский турбинный завод и АО «Наука», которые разработали и производят модульные геотермальные электростанции мощностью от 0,5 до 25 МВт. Разработана и начала реализовываться программа создания геотермального энергоснабжения Камчатки, в результате которой ежегодно будет сэкономлено около 900тыс. ТУТ. На Кубани эксплуатируется 10 месторождений геотермальных вод. За 1999-2000гг. уровень добычи теплоэнергетических вод в крае составил около 9млнм3, что позволило сэкономить до 65тыс.ТУТ. Предприятием «Турбокон», созданным при Калужском турбинном заводе, разработана чрезвычайно перспективная технология, позволяющая получать электроэнергию из горячей воды, испаряющейся под давлением и вращающей турбину, оснащенную вместо привычных лопастей специальными воронками — так называемыми соплами Лаваля. Польза от таких установок, получивших название гидропаровых турбин, как минимум двойная. Во-первых, они позволяют полнее использовать геотермальную энергию. Обычно для получения энергии используется только геотермальный пар или растворенные в геотермальной воде горючие газы, тогда как с помощью гидропаровой турбины для получения энергии можно использовать и непосредственно горячую воду. Другой возможный вариант применения новой турбины — получение электроэнергии в городских теплосетях, из воды, возвращающейся от потребителей тепла. Сейчас тепло этой воды пропадает впустую, тогда, как оно могло бы обеспечивать котельные независимым источником электричества.

Тепло недр Земли способно не только выбрасывать в воздух фонтаны гейзеров, но и согревать жилища и вырабатывать электроэнергию. Большими геотермальными ресурсами обладают Камчатка, Чукотка, Курилы, Приморский край, Западная Сибирь, Северный Кавказ, Краснодарский и Ставропольский края, Калининградская область.  Высокопотенциальное термальное тепло (пароводная смесь свыше 100 градусов по Цельсию) позволяет производить электроэнергию напрямую.

Обычно пароводяная термальная смесь извлекается из скважин, пробуренных на глубину 2–5 км. Каждая из скважин способна обеспечить электрическую мощность 4–8 МВт с площади геотермального месторождения около 1 км2. При этом по экологическим соображениям необходимо иметь и скважины для закачки в пласт отработанных геотермальных вод.

В настоящее время на Камчатке действуют 3 геотермальных электростанции: Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и Мутновская ГеоЭС. Суммарная мощность этих геотермальных электростанций составляет более 70 МВт. Это позволяет на 25% обеспечить потребности региона в электроэнергии и ослабить зависимость от поставок дорогостоящего привозного мазута.

В Сахалинской области на о. Кунашир введены первый агрегат мощностью 1,8 МВт Менделеевской ГеоТЭС и геотермальная тепловая станция ГТС-700 мощностью 17 Гкал/ч. Большая часть низкопотенциальной геотермальной энергии применяется в виде тепла в жилищно-коммунальном и сельском хозяйствах. Так, на Кавказе общая площадь обогреваемых геотермальными водами теплиц составляет свыше 70 га. В Москве построен и успешно эксплуатируется экспериментальный многоэтажный дом, в котором горячая вода для бытовых нужд нагревается за счет низкопотенциального тепла Земли.

Наконец, следует также упомянуть малые гидроэлектростанции. С ними дело обстоит относительно благополучно в плане конструкторских разработок: оборудование для малых ГЭС выпускается или готово к выпуску на многих предприятиях энергомашиностроительной промышленности, с гидротурбинами различной конструкции осевыми, радиально-осевыми, пропеллерными, диагональными, ковшовыми. При этом стоимость оборудования, изготовленного на отечественных предприятиях, остается значительно ниже мирового уровня цен. На Кубани ведется строительство двух малых ГЭС (МГЭС) на р. Бешенка в районе п.Красная Поляна г.Сочи и сбросе циркуляционной системы технического водоснабжения Краснодарской ТЭЦ. Запланировано строительство МГЭС на сбросе Краснодарского водохранилища мощностью 50 МВт. Начата работа по восстановлению системы малых ГЭС в Ленинградской области. В 1970-е гг. там, в результате проведения кампании по укрупнению электроснабжения области, прекратили работу более 40 таких станций. Плоды недальновидной гигантомании приходится исправлять сейчас, когда необходимость в малых источниках энергии стала очевидной.


Заключение

Нужно отметить, что в России ещё нет таких законов, которые бы регулировали альтернативную энергетику и стимулировали ее развитие. Равно как и нет структуры, которая бы защищала интересы альтернативной энергетики. Как, например, атомной энергетикой отдельно занимается Минатом. Запланирован доклад правительству об обосновании необходимости и разработке концепции проекта федерального закона "О развитии возобновляемых источников энергии". За подготовку этого доклада отвечают целых четыре министерства: Минэнерго, Минэкономразвития, Минпромнауки и Минюст. Когда они договорятся, неведомо.

Чтобы отрасль развивалась быстро и полноценно, закон должен предусматривать налоговые льготы предприятиям, производящим оборудование для получения энергии возобновляемых источников (например, снижение ставки НДС хотя бы до 10%). Важны также вопросы сертификации и лицензирования (прежде всего в том, что касается оборудования), потому что приоритет возобновляемой энергии также должен соответствовать требованиям качества.

Развитие альтернативных способов получения энергии тормозят производители и добытчики традиционных источников энергии: у них сильные позиции во власти и есть возможность отстаивать свои интересы. Альтернативная энергия до сих пор довольно дорога по сравнению с традиционной, потому что практически у всех предприятий-производителей установки выходят опытными партиями в очень небольших количествах и соответственно являются очень дорогими. Организация серийного производства и проведение сертификации установок требуют значительных инвестиций, которые полностью отсутствуют. Удешевлению стоимости могла бы способствовать господдержка. Однако же это противоречит интересам тех, чей бизнес основан на добыче традиционного углеводородного топлива. Лишняя конкуренция никому не нужна.
В результате преимущественному использованию возобновляемых источников и развитию альтернативной энергетики отдается предпочтение в основном в тех регионах, где это является наиболее очевидным решением сложившихся энергетических проблем. Россия располагает значительными ресурсами ветровой энергии, в том числе в тех регионах, где отсутствует централизованное электроснабжение - побережье Северного Ледовитого океана, Якутия, Камчатка, Чукотка, Сахалин, но даже в этих районах энергетические проблемы таким образом решать почти не пытаются.

О дальнейшем развитии альтернативной энергетики говорится в "Энергетической стратегии России на период до 2020 года". Цифры, которых должна достичь наша альтернативная энергетика, очень низки, задачи минимальны, поэтому перелома в российской энергетике ждать не приходится. За счет альтернативной энергетики к 2020 году планируется экономить меньше 1% всех топливных ресурсов. Приоритетом своей "энергетической стратегии" Россия выбирает атомную промышленность как "важнейшую часть энергетики страны".

В последнее время были предприняты некоторые шаги в сторону развития альтернативной возобновляемой энергетики. Минэнерго начало переговоры с французами о перспективах сотрудничества в области альтернативной энергетики. В целом же можно отметить, что состояние и перспективы развития альтернативной энергетики на ближайшие 10-15 лет в целом представляются плачевными.


Список используемых источников

1.   Копылов В.А. География промышленности России и стран СНГ. Учебное пособие. – М.: Маркетинг, 2001 – 184 с.

2.   Видяпин М.В., Степанов М.В. Экономическая география России. – М.: Инфра – М., 2002 – 533 с.

3.   Морозова Т.Г. Экономическая география России – 2 -е изд., ред.- М.: ЮНИТИ, 2002 – 471 с.

4.   Арустамов Э.А. Левакова И.В.Баркалова Н.В. Экологические основы природопользования. М. Изд. «Дашков и К».   2002.

5.   В. Володин, П. Хазановский Энергия, век двадцать первый.-М 1998

6.    А. Голдин «Океаны энергии». М: ЮНИТИ 2000

7.   Попов В. Биосфера и проблемы ее охраны. Казань. 1981.

8.   Рахилин В. общество и живая природа. М. Наука. 1989.

9.   Лаврус В.С.  Источники энергии  К: НиТ, 1997

10.     Э.Берман. Геотермальная энергия – Москва:  Мир,1978г.

11.     Л. С. Юдасин. Энергетика: проблемы и надежды. М: ЮНИТИ. 1999.  







© 2009 База Рефератов