рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

психология педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Реферат: Галогены

Реферат: Галогены

Реферат

Галогены

Содержание

Введение

Глава I. Свойства галогенов

1.1. Физические свойства

А) Фтор

Б) Хлор

В) Бром

Г) Иод

Д) Астат

1.2. Химические свойства

Глава II. Получение и применение

Заключение

Литература


Введение

Галогены (от греч. halos – соль и genes – рождающий, рождённый) находятся в главной подгруппе VII группы периодической системы химических элементов.

К галогенам относят фтор, хлор, бром, иод и астат.

Хим. знак

Распределение электронов

по энергетическим уровням

по энергетическим уровням и подуровням

по орбиталям

F

+9F 2ē, 7ē

 

+9F 1s22s22p5

     1s2    2s2       2p5

+9F

Cl

 

+17Cl 2ē, 8ē, 7ē

 

+17Cl 1s22s22p63s23p53d0

        3s2        3p5                   3d0

+17Cl …

Br

 

+35Br 2ē, 8ē, 18ē, 7ē

 

+35Br …3d0 ׀ 4s24p54d0

        4s2        4p5                   4d0

+35Br …

I

 

+53I 2ē, 8ē, 18ē, 18ē, 7ē

 

+53I …4d0 ׀ 5s25p55d0

       5s2        5p5                   5d0

+53I …

На наружном энергетическом уровне атомов галогенов находятся семь электронов:

        

До восьми электронов (октета) на наружном энергетическом уровне, т.е. до устойчивого состояния атомов, характерного для благородных газов, атомам галогенов недостаёт по одному электрону. К тому же атомы галогенов по сравнению с атомами металлов того же периода обладают бόльшим зарядом ядра, меньшим атомным радиусом и имеют по одному неспаренному электрону. Поэтому атомы всех галогенов энергично присоединяют недостающий электрон. Например,

Cl0 + ē → Cl–.

Фтор в химических реакциях проявляет только окислительные свойства, и для не­го характерна степень окисления –1. Остальные галогены мо­гут проявлять и восстановительные свойства при взаимодейст­вии с более электроотрицательными элементами – фтором, кислородом, азотом, при этом степени их окисления могут принимать значения +1, +3, +5, +7. Восстановительные свой­ства галогенов усиливаются от хлора к йоду, что связано с рос­том радиусов их атомов: атомы хлора примерно вдвое меньше, чем у йода.


Глава I. Свойства галогенов

1.1. Физические свойства


Вещество

Агрегатное состояние при обычных условиях


Цвет


Запах

Температура плавления, °С

Температура кипения, °С

Фтор F2

Газ Светло-жёлтый Резкий, раздражающий –220 –188

Хлор Cl2

Газ Жёлто-зелёный Резкий, удушливый –101 –34

Бром Br2

Жидкость Буровато-коричневый Резкий, зловонный –7 +58

Иод I2

Твёрдое вещество Чёрно-фиолетовый с металлическим блеском Резкий +114 +186

А) Фтор

Фтор (лат. Fluorum), F – химический элемент VII группы периодической си­стемы Менделеева, относится к галогенам, атомный номер 9, атомная масса 18,998403; при нормаль­ных условиях (0 °С; 0,1 Мн/м2, или 1 кгс/см2) - газ бледно-жёлтого цвета с резким запахом.

Природный фтор состоит из одного ста­бильного изотопа 19F. Искусственно полу­чены пять радиоактивных изотопов: 16F с периодом полураспада Т1/2 < 1 сек, 17F(Т1/2 = 70 сек), 18F (Т1/2 = 111 мин), 20F (Т1/2 = 11,4 сек), 21F(Т1/2 = 5 сек).

Среднее содержание фтора в земной коре 6,25*10-2% по массе; в кислых изверженных породах (гра­нитах) оно составляет 8*10-2%, в ос­новных - 3,7*10-2%, в ультраоснов­ных – 10-2%. Фтор присутствует в вулка­нических газах и термальных водах. Важ­нейшие соединения фтора - флюорит, крио­лит и топаз. Всего известно 86 фторсодержащих мине­ралов. Соединения фтора находятся также в апатитах, фосфоритах и других. Фтор - важный биогенный элемент. В истории Земли источником поступления фтора в био­сферу были продукты извержения вулка­нов (газы и др.).

Газообразный фтор имеет плотность 1,693 г/л (0 °С и 0,1 Мн/м2, или 1 кгс/см2), жидкий - 1,5127 г/см3 (при температуре кипения); tпл -219,61 °С; tкип -188,13 °С. Молекула фтора состоит из двух атомов (F2); при 1000 °С 50% молекул диссоциирует, энер­гия диссоциации около 155±4 кдж/моль (37±1 ккал/моль). Фтор плохо раство­рим в жидком фтористом водороде; раст­воримость 2,5*10-3 г в 100 г НF при -70 °С и 0,4*10-3 г при -20 °С; в жидком виде неограниченно растворим в жидком кислороде и озоне. Конфигурация внешних электронов атома фтора 2s2 2р5. В соеди­нениях проявляет степень окисления -1. Ковалентный радиус атома 0,72А, ион­ный радиус 1,33А. Сродство к электрону 3,62 эв, энергия ионизации (F ® F+) 17,418 эв. Высокими значениями сродства к электрону и энергии ионизации объяс­няется сильная электроотрицательность атома фтора, наибольшая среди всех других элементов. Высокая реакционная спо­собность фтора обусловливает экзотермичность фторирования, которая, в свою очередь, определяется аномально малой ве­личиной энергии диссоциации молекулы фтора и большими величинами энергии связей атома фтора с другими атомами.

Б) Хлор

Хлор (лат. Chlorum), Cl - химический элемент VII группы периодической системы Менде­леева, атомный номер 17, атомная масса 35,453; относится к семейству галогенов. При нормальных условиях (0 °С, 0,1 Мн/м2) жёлто-зелёный газ с резким раздражающим запахом. Природный хлор состоит из двух стабильных изотопов: 35Cl (75,77%) и 37Cl (24,23%). Искусственно получены радиоактивные изотопы с массовыми чис­лами 32, 33, 34, 36, 38, 39, 40 и периодами полураспада Т1/2 соответственно 0,31; 2,5; 1,56 сек; 3,1*105 лет; 37,3; 55,5 и 1,4 мин. 36Cl и 38Cl используются как изотопные индикаторы.

Xлор встречается в природе только в виде соединений. Среднее содержание хлора в земной коре 1,7*10-2% по массе, в кислых изверженных поро­дах - гранитах 2,4*10-2, в основ­ных и ультраосновных 5*10-3. Основную роль в истории хлора в земной коре играет вод­ная миграция. В виде иона Cl- он содер­жится в Мировом океане (1,93%), под­земных рассолах и соляных озерах. Число собственных минералов (преимущественно природных хлоридов) 97, главный из них - галит NаCl. Изве­стны также крупные месторождения хлоридов калия и магния и смешанных хлоридов: сильвин КCl, сильвинит (Nа, К) Cl, карналлит КCl*МgCl2*6Н2О, каинит КCl*МgSO4*ЗН2О, бишофит МgCl2*6Н2О. В истории Земли большое значение имело поступление содержаще­гося в вулканических газах НCl в верхние ча­сти земной коры.

Xлор имеет tкип - 34,05 °С, tпл - 101 °С. Плотность газообразного хлора при нормальных условиях 3,214 г/л; насыщенного пара при 0 °С 12,21 г/л; жид­кого хлора при температуре кипения 1,557 г/см3; твёрдого хлора при -102 °С 1,9 г/см3. Давление насыщенных паров хлора при 0 °С 0,369; при 25 °С 0,772; при 100 °С 3,814 Мн/м2 или соответственно 3,69; 7,72; 38,14 кгс/см2. Те­плота плавления 90,3 кдж/кг (21,5 кал/г); теплота испарения 288 кдж/кг (68,8 кал/г); теплоёмкость газа при постоянном давле­нии 0,48 кдж/(кг*К) [0,11 кал/(г*°С)]. Xлор хорошо растворяется в ТiСl4, SiCl4, SnCl4 и некоторых органических растворителях (особенно в гексане и четырёххлористом углероде). Мо­лекула хлора двухатомна (Cl2). Степень термической диссоциации Cl2+243 кдж Û 2Cl при 1000 К равна 2,07*10-4%, при 2500 К 0.909%.

Внешняя электронная конфигурация атома Сl Зs2 3р5. В соответствии с этим хлор в соединениях проявляет степени окис­ления -1, +1, +3, +4, +5, +6 и +7. Ковалентный радиус атома 0,99А, ионный радиус Сl- 1,82А, сродство атома хлора к электрону 3,65 эв, энергия ионизации 12,97 эв.


В) Бром

Бром (лат. Bromum), Br - химический эле­мент VII группы периодической системы Мен­делеева, относится к галогенам, атомный номер 35, атомная масса 79,904; красно-бурая жид­кость с сильным неприятным запа­хом. Бром открыт в 1826 французским химиком А. Ж. Баларом при изучении рассолов средиземноморских соляных промыслов; назван от греческого bromos – зловоние. При­родный бром состоит из 2 стабильных изо­топов 79Br (50,34%) и 81Br (49,46%). Из искусственно полученных радиоактив­ных изотопов брома наиболее интересен 80Вr, на примере которого И. В. Курчатовым открыто явление изомерии атомных ядер.

Содержание брома в земной коре (1,6*l0-4% по массе) оценивается в 1015-1016 т. В главной своей массе бром находится в рас­сеянном состоянии в магматических породах, а также в широко распространённых галогенидах. Бром - постоянный спутник хлора. Бромистые соли (NaBr, KBr, MgBr2) встречаются в отложениях хлористых солей (в поваренной соли до 0,03% Br, в калийных солях - сильвине и карналлите - до 0,3% Вr), а также в морской воде (0,065% Br), рапе соляных озёр (до 0,2% Br) и подземных рассолах, обычно связанных с соляными и нефтя­ными месторождениями (до 0,1% Br). Благодаря хорошей растворимости в воде бромистые соли накопляются в остаточ­ных рассолах морских и озёрных водоё­мов. Бром мигрирует в виде легко раство­римых соединений, очень редко образуя твёрдые минеральные формы, представ­ленные бромиритом AgBr, эмболитом Ag (Сl, Br) и иодэмболитом Ag (Сl, Вr, I). Образование минералов происходит в зонах окисления сульфидных серебро-содержащих месторождений, формирую­щихся в засушливых пустынных облас­тях.

При -7,2°С жид­кий бром застывает, превращаясь в красно-коричневые игольчатые кристаллы со слабым металлическим блеском. Пары брома жёлто-бурого цвета, tкип 58,78°С. Плот­ность жидкого брома (при 20°С) 3,1 г/см3. В воде бром растворим ограниченно, но лучше других галогенов (3,58 г брома в 100 г Н2О при 20°С). Ниже 5,84°С из воды осаждаются гранатово-красные кристаллы Br2*8H2O. Особенно хорошо растворим бром во многих органических раство­рителях, чем пользуются для извлечения его из водных растворов. Бром в твердом, жидком и газообразном состоянии состо­ит из 2-атомных молекул. Заметная диссоциация на атомы начинается при температуре около 800°С; диссоциация наблю­дается и при действии света.

Г) Иод

Иод (лат. Iodium), I - химический элемент VII группы периодической системы Менделе­ева, относится к галогенам (в литературе встречается также символ J); атомный номер 53, атомная масса 126,9045; кри­сталлы черно-серого цвета с металлическим блеском. Природный иод состоит из одного стабильного изотопа с массовым числом 127. Иод открыл в 1811 французский химик Б. Куртуа. Нагревая маточный рассол золы морских водорослей с концентриро­ванной серной кислотой, он наблюдал выде­ление фиолетового пара (отсюда название иод - от греческого iodes, ioeides - похожий цветом на фиалку, фиолетовый), который конденсировался в виде темных блестя­щих пластинчатых кристаллов. В 1813 - 1814 французский химик Ж.Л. Гей-Люссак и английский химик Г. Дэви доказали элементар­ную природу иода.

Среднее содержание иода в зем­ной коре 4*10-5% по массе. В мантии и магмах и в образовавшихся из них породах (гранитах, базальтах) соединения иода рассеяны; глубинные минералы иода неизвестны. История иода в земной коре тесно связана с живым веществом и биогенной миграцией. В биосфере наблюдаются процессы его концентрации, особенно морскими организма­ми (водорослями, губками). Изве­стны 8 гипергенных минералов иода, обра­зующихся в биосфере, однако они очень редки. Основным резервуаром иода для биосферы служит Мировой океан (в 1 литре в среднем содержится 5*10-5 грамм иода). Из океана соединения иода, растворенные в каплях морской воды, попадают в ат­мосферу и переносятся ветрами на конти­ненты. Местности, удаленные от океана или отгороженные от морских ветров горами, обеднены иодом. Иод легко адсорбируется органическими веществами почв и морских илов. При уплотнении этих илов и обра­зовании осадочных горных пород проис­ходит десорбция, часть соединений иода переходит в подземные воды. Так обра­зуются используемые для добычи иода иодо-бромные воды, особенно характер­ные для районов нефтяных месторожде­ний (местами 1 литр этих вод содержит свыше 100 мг иода).

Плотность иода 4,94 г/см3, tпл 113,5 °С, tкип 184,35 °С. Молекула жидкого и газообразного иода состоит из двух атомов (I2). Заметная диссоциация I2 Û 2I наблюдается выше 700 °С, а также при действии света. Уже при обычной температуре иод испаряется, обра­зуя резко пахнущий фиолетовый пар. При слабом нагревании иод возгоняется, оседая в виде блестящих тонких пластинок; этот процесс служит для очистки иода в лабора­ториях и в промышленности. Иод плохо растворим в воде (0,33 г/л при 25 °С), хорошо - в сероуглероде и органических растворителях (бензоле, спирте), а также в водных растворах иодидов.

Пары иода ядовиты и раздражают сли­зистые оболочки. На кожу иод оказывает прижигающее и обеззараживающее дей­ствие. Пятна от иода смывают растворами соды или тиосульфата натрия.

Д) Астат

Астат (лат. Astatium) - один из важнейших радиоактивных химических элементов в природе. Он относится к VII группе периодической системы Менделеева. Атомный номер – 85.

У астата нет стабильных изотопов. Радиоактивных изотопов астата, открытых к данному времени около 20, все они очень неустойчивы. Наиболее долгоживущий 210At имеет период полураспада T 1/2 8,3 ч. Именно по этой причине в земном поверхностном слое (1,6 км), как показали расчеты, содержится 69 мг астата-218. Это очень мало.

Как чистый металл астат обладает уникальным свойством – возгоняется в молекулярной форме из водных растворов, такой способности нет ни у одного из известных элементов.

Астат легко испаряется как в обычных условиях, так и в вакууме. А также хорошо адсорбируется на металлах - Ag, Au, Pt.

Именно благодаря этим свойствам удается выделить астат из продуктов облучения висмута. Этого добиваются путем их вакуумной дистилляции с поглощением астата серебром или платиной (до 85%).

1.2. Химические свойства

I. Взаимодействие с неорганическими веществами:

1.   Взаимодействие с металлами:

2Al + 3F2 = 2AlF3

Sn + Cl2  SnCl2

2Fe + 3Cl2  2FeCl3

Cu + Br2  CuBr2

Zn + I2 = ZnI2

2.   Взаимодействие с водородом:

Cl2 + H2  2HCl

3.   Взаимодействие с водой:

Cl2 + H2O = HCl + HClO

Хлорноватистая кислота

2Br2 + 2H2O = 4HF + O2.

4. Взаимодействие со щелочами:

Cl2 + 2KOH = KClO + KCl + H2O (без нагревания)

3Cl2 + 6KOH  KClO3 + 5KCl + 3H2O (с нагреванием)

5. Взаимодействие с галогенидами – соединениями галогенов с металлами:

фтор вытесняет из солей хлор, бром, йод:

2NaCl + F2 = 2NaF + Cl2

2KBr + F2 = 2KF + Br2

хлор вытесняет из солей бром, йод:

2KBr + Cl2 = 2KCl + Br2

бром вытесняет из солей йод:

2KI + Br2 = 2KBr + I2↓.

II. Взаимодействие органическими веществами (галогенирование - присоединение галогена). Галогены взаимодействуют со всеми классами органических соединений. Рассмотрим некоторые реакции:

1. С алканами:

CH3–CH3 + Cl2 → CH2Cl–CH3 + HCl

хлорэтан

2. С алкенами:

CH2=CH2 + Br2 → CH2Br–CH2Br

1,2-дибромэтан

3. С алкинами:

CH≡CH + Br2 → CHBr=CHBr

1,2-дибромэтен


Глава II. Получение и применение

Фтор. Источником для производства фтора служит фтористый водород, получающийся в основном либо при действии серной кислоты H2SO4 на флюо­рит CaF2, либо при переработке апати­тов и фосфоритов. Производство фтора осу­ществляется электролизом расплава кис­лого фторида калия, который образуется при насыщении распла­ва KF*HF фтористым водородом до со­держания 40-41% HF. Материалом для электролизера обычно служит сталь; электроды - угольный анод и стальной катод. Электролиз ведется при 95-100 °С и напряжении 9-11 в; выход фтора по току достигает 90-95%. Получающийся фтор содержит до 5% HF, который удаляется вымораживанием с последующим погло­щением фторидом натрия. Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жид­ким азотом) в аппаратах из никеля и сплавов на его основе, из меди, алюминия и его сплавов, латуни нержавеющей стали.

Газообразный фтор служит для фторирования UF4 в UF6, применяемого для изотопов разделения урана, а также для получения трех-фтористого хлора СlF3 (фторирующий агент), шестифтористой серы SF6 (газо­образный изолятор в электротехнической промышленности), фторидов металлов (например, W и V). Жидкий фтор - окислитель ракет­ных топлив.

Широкое применение получили много­численные соединения фтора - фтористый водород, алюминия фторис), кремне-фториды, фторсульфоновая кислота (рас­творитель, катализатор, реагент для по­лучения органических соединений, содержа­щих группу - SO2F), ВF3 (катализатор), фторорганические соединения и др.

Хлор. Xлор начали произво­дить в промышленности в 1785 взаимодействием соляной кислоты с двуокисью марганца или пиролюзитом. В 1867 английский химик Г. Дикон разработал способ получения хлора оки­слением НСl кислородом воздуха п при­сутствии катализатора. С конца 19 - начала 20 веков хлор получают электролизом вод­ных растворов хлоридов щелочных ме­таллов. По этим методам в 70-х годах 20 века производится 90 - 95% хлора в мире. Не­большие количества хлора получаются попутно при производстве магния, кальция, натрия и лития электролизом расплавленных хло ридов. В 1975 году мировое производство хлора составляло около 23 млн. тонн. Применяются два основных метода электролиза водных растворов NаСl: 1) в электролизёрах с твёрдым катодом и пористой фильтрую­щей диафрагмой; 2) в электролизёрах с ртутным катодом. По обоим методам на графитовом или окисном титано-рутениевом аноде выделяется газообразный хлор. По первому методу на катоде выделяет­ся водород и образуется раствор NаОН и NаСl, из которого последующей перера­боткой выделяют товарную каустическую соду. По второму методу на катоде обра­зуется амальгама натрия, при её разло­жении чистой водой в отдельном аппа­рате получаются раствор NаОН, водород и чистая ртуть, которая вновь идёт в про­изводство. Оба метода дают на 1 тонну хлора 1,125 тонны NаОН.

Электролиз с диафрагмой требует меньших капиталовложений для органи­зации производства хлора, дает более дешёвый NаОН. Метод с ртутным катодом позво­ляет получать очень чистый NаОН, но потери ртути загрязняют окружающую среду. В 1970 по методу с ртутным като­дом производилось 62,2% мировой вы­работки хлора, с твёрдым катодом 33,6% и прочими способами 4,3%. После 1970 начали применять электролиз с твёрдым катодом и ионообменной мембраной, позволяю­щий получать чистый NаОН без использо­вания ртути.

Одной из важных отраслей химической промышленности является хлорная промышленность. Основные количества хлора перерабаты­ваются на месте его производства в хлорсодер жащие соединения. Хранят и перевозят хлор в жидком виде в баллонах, бочках, железнодорожных цистернах или в специально обору­дованных судах. Для индустриальных стран характерно следующее примерное потребление хлора: на производство хлорсодержа щих органических соединений - 60 - 75%; неорганических соединений, содержащих хлор, -10 - 20%; на отбелку целлюлозы и тка­ней - 5 - 15%; на санитарные нужды и хлорирование воды - 2 - 6% от общей выраобтки.

Xлор применяется также для хлорирова­ния некоторых руд с целью извлечения титана, ниобия, циркония и других.

Бром. Исходным сырьём для получения брома слу­жат морская вода, озёрные и подземные рассолы и щелока калийного произва, содержащие бром в виде бромид-иона Вг-. Бром выделяют при помощи хло­ра и отго­няют из раствора водяным паром или воздухом. Отгонку паром ведут в колон­нах, изготовленных из гранита, керамики или иного стойкого к брому материала. Сверху в колонну подают подогретый рассол, а снизу - хлор и водяной пар. Пары брома, выходящие из колонны, кон­денсируют в керамиковых холодильни­ках. Далее бром отделяют от воды и очища­ют от примеси хлора дистилляцией. Отгонка воздухом позволяет использо­вать для получения брома рассолы с его низ­ким содержанием, выделять бром из которых паровым способом в результате большо­го расхода пара невыгодно. Из получае­мой бромовоздушной смеси бром улав­ливают химическими поглотителями. Для этого применяют растворы бромистого железа, которое, в свою очередь, получают восстановлением FеВг3 железными стружками, а также раство­ры гидроокисей или карбонатов натрия или газообразный сернистый ангидрид, реагирующий с бромом в присутствии паров воды с образованием оромистоводородной и серной кислот. Из полученных полу­продуктов бром выделяют действием хлора или кислоты. В случае необходимости полу­продукты перерабатывают на бромистые соединения, не выделяя элементарного брома.

Вдыхание паров брома при содержании их в воздухе 1 мг/м3 и более вызывает кашель, насморк, носовое кровотечение, головокружение, головную боль; при более высоких концентрациях - удушье, брон­хит, иногда смерть. Предельно допусти­мые концентрации паров брома в воздухе 2 мг/м3. Жидкий бром действует на кожу, вызывая плохо заживающие ожоги, Работы с бромом следует проводить в вытяж­ных шкафах. При отравлении парами брома рекомендуется вдыхать аммиак, исполь­зуя для этой цели сплыю разбавленный раствор его в воде или в этиловом спирте. Боль в горле, вызванную вдыханием паров брома, устраняют приёмом внутрь горячего молока. Бром, попавший на кожу, смывают большим количеством воды или сдувают сильной струей воздуха. Обож­жённые места смазывают ланолином.

Бром применяют довольно широко. Он - исходный продукт для получения ряда бромистых солей и органических производ­ных. Большие количества брома расходуют для получения бромистого этила и дибромэтана - составных частей этиловой жидкости, добавляемой к бензинам для повышения их детонационной стойкости. Соединения брома применяют в фотографии, при производстве ряда красителей, бромистый метил и некоторые другие соединения брома - как ин­сектициды. Некоторые органические соединения брома служат эффективными огнетушащими средствами. Бром и бромную воду ис­пользуют при химических анализах для опре­деления многих веществ. В медицине исполь­зуют бромиды натрия, калия, аммония, а также органичанические соединения брома, которые применяют при неврозах, истерии, повы­шенной раздражительности, бессоннице, гипертонические болезни, эпилепсии и хорее.

Иод. Сырьем для промышленного получения иода в России служат нефтяные буровые воды; за рубежом - морские водоросли, а также маточные растворы чилийской (натриевой) селитры, содержащие до 0,4% иода в виде иодата натрия. Для из­влечения иода из нефтяных вод (содержа­щих обычно 20 - 40 мг/л иода в виде иодилов) на них сначала действуют хлором или азотистой кислотой. Выде­лившийся иод либо адсорбируют активным углем, либо выдувают воздухом. На иод, адсорбированный углем, действуют ед­кой щелочью или сульфитом натрия. Из продуктов реакции свободный иод выделяют действием хлора или серной кислоты и окислителя, например дихромата калия. При выдувании воздухом иод по­глощают смесью двуокиси серы с водя­ным паром и затем вытесняют иод хлором. Сырой кристаллический иод очищают возгонкой.

Иод и его соединения применяют главным образом в медицине и в аналитической химии, а также в органическом синтезе и фотографии. В промышленности применение иода пока незначительно по объему, но весьма перспективно. Так, на термическом разложении иодидов основано получение высокочистых металлов.

Астат широкого применения не имеет.


Заключение

В заключение несколько слов о галогенах как об элементах в клетках нашего организма.

Фтор по­стоянно входит в состав животных и растительных тканей; микроэлементов. В виде неорганических соединений содержится главным образом в костях животных и человека - 100-300 мг/кг; особенно много фтора в зу­бах. Кости морских животных богаче фтором по сравнению с костями наземных. Посту­пает в организм животных и человека преимущественно с питьевой водой, оптимальное содержание фтора в которой 1-1,5 мг/л. При недостатке фтора у человека развивается кариес зубов, при повышенном поступ­лении - флюороз. Высокие концентра­ции ионов фтора опасны ввиду их способ­ности к ингибированию ряда ферментативных реакций, а также к связыванию важных в биологическом отношении элементов (Р, Са, Мg и др.), нарушающему их ба­ланс в организме. Органические производные фтора обнаружены только в некоторых расте­ниях (например, в южноафриканском Dicha petalum cymosum). Основные из них - производные фторуксусной кислоты, токсич­ные как для других растений, так и для жи­вотных. Биологическая роль изучена недостаточно. Установлена связь об­мена фтора с образованием костной ткани скелета и особенно зубов. Необходимость фтора для растений не доказана.

Xлор - один из биогенных элементов, постоянный ком­понент тканей растений и животных. Содержание хлора в растениях (много хлора в галофитах) - от тысячных долей про­цента до целых процентов, у животных - десятые и сотые доли процента. Су­точная потребность взрослого человека в хлоре, (2 - 4 г) покрывается за счёт пищевых продуктов. С пищей хлор поступает обыч­но в избытке в виде хлорида натрия и хлорида калия. Особенно богаты хлором хлеб, мясные и молочные продукты. В организме животных хлор - основное осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и некоторых тканей. Играет роль в водно-со­левом обмене, способствуя удержанию тканями воды. Регуляция кислотно-ще­лочного равновесия в тканях осуществля­ется наряду с другими процессами путём изменения в распределении хлора между кровью и другими тканями, хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. Xлор положи­тельно влияет на поглощение корнями кислорода. Xлор необходим для образо­вания кислорода в процессе фотосинтеза изолированными хлоропластами. В состав большинства питательных сред для искусственного культивирования растений хлор не входит. Возможно, для развития растений достаточны весьма малые концентрации хлора.

Бром - постоянная составная часть тканей животных и растений. Наземные растения содержат в среднем 7*10-4% брома на сырое вещество, животные ~10-4%. Бром найден в различных секретах (слезах, слюне, поте, молоке, желчи). В крови здорового человека содержание брома колеблется от 0,11 до 2,00 мг%. С помощью радиоактивного брома (82Br) установлено избирательное погло­щение его щитовидной железой, мозго­вым слоем почек и гипофизом. Введён­ные в организм животных и человека бромиды усиливают концентрацию про­цессов торможения в коре головного мозга, содействуют нормализации состояния нервной системы, пострадавшей от пере­напряжения тормозного процесса. Одновременно, задерживаясь в щитовидной железе, бром вступает в конкурентные отно­шения с иодом, что влияет на деятель­ность железы, а в связи с этим - и на состояние обмена веществ.

Иод - необходимый для животных и человека микроэлемент. В почвах и растениях таежно-лесной нечерноземной, сухостепной, пустынной и горных биогеохимических зон. Иод содержится в недостаточном количестве или не сбалансирован с некоторыми другими микроэлементами (Со, Мn, Сu); с этим связано распространение в этих зонах эндемического зоба. Среднее со­держание иода в почвах около 3*10-4%, в растениях около 2*10-5%. В поверхност­ных питьевых водах иода мало (от 10-7 до 10-9%). В приморских областях количество иода в 1 м3 воздуха может достигать 50 мкг, в континентальных и горных - состав­ляет 1 или даже 0,2 мкг.

Поглощение иода растениями зависит от содержания в почвах его соединений и от вида растений. Некоторые организмы (так называемые концентраторы иода, например морские водо­росли - фукус, ламинария, филлофора, накапливают до 1% иода, некоторые губки - до 8,5% (в скелетном веществе спонгине). Водоросли, концентрирующие иод, ис­используются для его промышленного получения. В животный организм иод поступает с пи­щей, водой, воздухом. Основной источник иода - растительные продукты и корма. Всасы­вание иода происходит в передних отделах тонкого кишечника. В организме чело­века накапливается от 20 до 50 мг иода, в том числе в мышцах около 10 - 25 мг, в щито­видной железе в норме 6 - 15 мг. С по­мощью радиоактивного иода (131I и 125I) по­казано, что в щитовидной железе иод на­капливается в митохондриях эпителиальных клеток и входит в состав образующих­ся в них дииод- и моноиодтирозинов, которые конденсируются в гормон тетраиодтиронин (тироксин). Выделяется иод из организма преимущественно через почки (до 70 - 80%), молочные, слюнные и потовые же­лезы, частично с жёлчью.

В различных биогеохимических про­винциях содержание иода в суточном ра­ционе колеблется (для человека от 20 до 240 мкг, для овцы от 20 до 400 мкг). Потребность животного в иода зависит от его физиологического состояния, времени года, температуры, адаптации организма к содер­жанию иода в среде. Суточная потребность в иоде человека и животных - около 3 мкг на 1 кг массы (возрастает при беремен­ности, усиленном росте, охлаждении). Введение в организм иода повышает основ­ной обмен, усиливает окислительные процессы, тонизирует мышцы, стимулирует поло­вую функцию.

В связи с большим или меньшим недо­статком иода в пище и воде применяют иодирование поваренной соли, содержа­щей обычно 10 - 25 г йодистого калия на 1 тонну соли. Применение удобрений, содер­жащих иод, может удвоить и утроить его содержание в сельскохозяйственных культурах.


Литература:

1.         Ахметов Н.С. Химия 9 класс: учеб. для общеобразоват. учеб. заведений. – 2-е изд. – М.: Просвещение, 1999. – 175 с.: ил.

2.         Габриелян О.С. Химия 9 класс: учеб. для общеобразоват. учеб. заведений. – 4-е изд. – М.: Дрофа, 2001. – 224 с.: ил.

3.         Габриелян О.С. Химия 8-9 классы: метод. пособие. – 4-е изд. – М.: Дрофа, 2001. – 128 с.

4.         Ерошин Д.П., Шишкин Е.А. Методика решения задач по химии: учеб. пособие. – М.: Просвещение, 1989. – 176 с.: ил.

5.         Крицман В.А. Книга для чтения по неорганической химии. – М.: Просвещение, 1986. – 273 с.

6.         Рудзитис Г.Е., Фельдман Ф.Г. Химия 8 класс: учеб. для общеобразоват. учеб. заведений. – 6-е изд. – М.: Просвещение, 1998. – 158 с.: ил.

7.         Свиридов Н.Д. Галогены: учебно-методическое пособие. – 3-е изд. – М.: Просвещение, 1995. 139 с.: ил.







© 2009 База Рефератов